ISI BANGALORE

INTRODUCTION TO ALGEBRAIC GEOMETRY

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(c) By default, k denotes an algebraically closed field and \mathbb{A}_k^n is the affine *n*-space over k. By default, the polynomial ring of functions on \mathbb{A}_k^n is denoted as $k[X_1, \ldots, X_n]$ while for n = 1, 2, 3 we also use the usual notation of X, Y, Z for the variables.

(d) We will use $\mathcal{V}(-)$ to denote the common zero locus (in suitable affine space) of any collection of polynomials and $\mathcal{I}(-)$ the ideal of functions vanishing on a given subset of affine space.

1. [12 points] Let $f: \mathbb{A}^1_k \to \mathbb{A}^2_k$ be the polynomial map given by $t \mapsto (t^2, t^3)$. Describe the induced map of coordinate rings and describe its kernel.

2. [12 points] Prove that an affine algebraic set $Z \subset \mathbb{A}^n_k$ is irreducible if and only if $\mathcal{I}(Z)$ is a prime ideal in $k[X_1, \ldots, X_n]$.

3. [12 points] Define what it means for a topological space to be noetherian. Prove that every subspace of a neotherian topological space is (quasi)-compact.

4. [12 points] Let $V = \mathcal{V}(XZ, YZ) \subset \mathbb{A}^3_k$. Find the irreducible and connected components of V and of $V \setminus \{(0,0,0)\}$.

5. [12 points] Let W_1, W_2 be disjoint nonempty closed subsets of an affine algebraic set Z. Prove that there exists a regular function f on Z such that f takes the value 1 everywhere on W_1 and 0 everywhere on W_2 .

6. [12 points] Let $I \subset k[X_1, \ldots, X_n]$ be an ideal such that $\mathcal{V}(I) = (0, \ldots, 0)$. Let $\mathfrak{m} = (X_1, \ldots, X_n)$. Prove that $\mathfrak{m}^r \subset I \subset \mathfrak{m}$ for some suitable integer r.

7. [14 points] Let A be a finitely generated k-algebra. Let $f \in A$. Construct a natural bijection between the set \mathcal{M} of maximal ideals in A not containing f and the set \mathcal{M}' of maximal ideals in A_f .

8. [14 points] Let V be the complement of finitely many points in \mathbb{A}^3_k . Compute the ring of regular functions $\mathcal{O}[V]$.

March 2018

100 Points